Содержание азота в растениях

Азот | справочник Пестициды.ru

Цветение и образование ягод слабое.

Яблоня

Листья мельчают, становятся бледно-зелеными, более старые – оранжевыми, красными или пурпурными, опадают рано,

Рост побегов ослабевает,

Побеги твердые, тонкие, листья мелкие,

Верхушечные почки формируются рано,

Плодовых почек и цветков мало,

Плоды сильно окрашены,

Плоды твердые, грубые, нетипичного вкуса и окраски,

Отличаются хорошей лежкостью

Листья мельчают, становятся бледно-зелеными, более старые – оранжевыми, красными или пурпурными, опадают рано,

Рост побегов ослабевает,

Побеги твердые, тонкие, листья мелкие,

Верхушечные почки формируются рано,

Плодовых почек и цветков мало,

Плоды сильно окрашены

Листья мельчают, становятся бледно-зелеными, более старые – оранжевыми, красными или пурпурными, опадают рано,

Рост побегов ослабевает,

Побеги твердые, тонкие, листья мелкие,

Верхушечные почки формируются рано,

Плодовых почек и цветков мало,

Плоды сильно окрашены

Листья мельчают, становятся бледно-зелеными, более старые – оранжевыми, красными или пурпурными, опадают рано.

Рост побегов ослабевает,

Побеги твердые, тонкие, листья мелкие,

Верхушечные почки формируются рано,

Плодовых почек и цветков мало,

Плоды сильно окрашены

Нитраты и нитриты

вовлекаются в синтез аминокислот только после восстановления в тканях растения. Редукция нитратов до аммиака проходит уже в корнях. Этот процесс осуществляется с помощью флавиновых металлоферментов, с сопровождением изменения валентности атомов азота. При поступлении нитратного азота в растения в избытке часть его в неизменном состоянии доходит до листьев, где происходит восстановление нитратов.

Нитратный азот растения могут накапливать в значительных количествах, без особого вреда для собственной жизнедеятельности.

Биосинтез аминокислот (аминирование)

Аминирование

(биосинтез аминокислот) осуществляется в результате взаимодействия аммиака с кетокислотами (пировиноградной, щавеллевоуксусной, кетоглуаровой и др.). Данные кислоты образуются в процессе дыхания при окислении углеводородов. Аминирование проходит с помощью ферментов.

В аминокислотах азот присутствует в виде аминогруппы – NH2. Образование аминокислот может происходить как в подземной (корнях), так и в наземных частях растений.

Установлено, что уже через несколько минут после подкормки растений аммиачными удобрениями в их тканях обнаруживаются аминокислоты, синтезированные с использованием внесенного в подкормку аммиака. Первой аминокислотой, образующейся в растении, является аланин, затем синтезируются аспарагиновая и глутаминовая кислоты.

Переаминирование аминокислот

Реакция переаминирования аминокислот заключается в переносе аминогруппы с аминокислоты на кетокислоту. При этом образуются другие амино- и кетокислоты. Эта реакция катализируется ферментами аминоферазами и трансаминазами.

Путем переаминирования синтезируется значительное число аминокислот. Наиболее легко в этот процесс вовлекаются глутаминовая и аспарагиновая кислоты.

Разнообразие белковых и небелковых азотистых соединений

Как указывалось ранее, аминокислоты представляют собой основные структурные единицы белков и полипептидов, поскольку белки образуются из синтезированных в полипептидные цепи аминокислот. Различный набор и пространственное расположение аминокислот в полипептидных цепях способствуют синтезу огромного разнообразия белков. Известно свыше 90 аминокислот. Значительная их часть (около 70) присутствует в растительных тканях в свободном состоянии и не входит в состав белковых молекул.

В состав белков растений входят незаменимые для жизнедеятельности человека и животных белки: лизин, фенилаланин, триптофан, валин, треонин, метионин и другие. В организме млекопитающих и других высших животных данные белки синтезироваться не могут.

Растения содержат 20 – 26% небелкового органического азота от общего количества. В неблагоприятных условиях (дефицит калия, недостаток освещенности) количество небелковых азотистых соединений в растениях повышается.

Дезаминирование аминокислот

Белки и небелковые азотистые соединения находятся в тканях растений в подвижном равновесии. Наряду с синтезом аминокислот и белковых соединений, постоянно проходят процессы их распада.

Реакция дезаминирования

заключается в отщеплении аминогруппы от аминокислоты с образованием кетокислоты и аммиака. Освободившаяся кетокислота идет на биосинтез углеводов, жиров и прочих веществ. Аммиак вступает в реакцию аминирования других кетокислот, образуя соответствующие аминокислоты. При избытке аммиака образуются аспарагин и глутамин.

Весь сложнейший цикл трансформации и превращения азотистых соединений в растении начинается с аммиака и завершается аммиаком.

Обмен азотистых веществ в различные периоды развития растения

За время роста растения синтезируют большое количество разнообразных белков, и в разные периоды роста процесс обмена азотистых веществ протекает по-разному.

При прорастании семенного материала наблюдается распад ранее запасенных белков. Продукты распада идут на синтез аминокислот, амидов и белков в тканях проростков до выхода их на поверхность почвы.

По мере образования листового аппарата и корневой системы синтез белков проходит за счет минерального азота, поглощенного из почвы.

В органах молодых растений преобладает синтез белков. В процессе старения распад белковых веществ начинает преобладать над синтезом. Из стареющих органов продукты распада движутся в молодые, интенсивно растущие, где и находят применение для синтеза белка в точках роста.

При созревании и формировании репродуктивных органов растения происходит распад веществ в вегетативных частях растений и передвижение их в репродуктивные органы, где они используются в процессах синтеза запасных белков. В это время потребление азота из почвы значительно ограничивается или совсем прекращается.

Недостаток (дефицит) азота в растениях

Азот плохо усваивается растениями при холодной погоде, на кислых неизвесткованных почвах, на почвах, содержащих большое количество небобовых культур и опилок.

Первый признак азотного голодания – изменение окраски листовой пластинки с зеленой на бледно-зеленую, а затем желтоватую и бурую из-за недостаточного образования хлорофилла.

При дальнейшем усилении дефицита азота размер листьев уменьшается. Они становятся узкими, мелкими, располагаются под острым углом к стеблю или ветви. Ветвление у растений ослабляется, уменьшается число плодов, зерен или семян.

Нарушение содержания азота в растениях

Нарушение содержания азота в растениях

1 – недостаток: хлороз, ослабление кущения, отставание в росте у пшеницы;

2 – избыток: увеличение вегетативной массы, яркая окраска листьев у табака.

Использованы изображения:

Избыток азота

Избыток азота в молодом возрасте подавляет рост растений. В более взрослом наблюдается бурное развитие вегетативной массы в ущерб запасающим и репродуктивным органам. Снижается урожай, вкусовые качества и лежкость овощей и плодов.

Избыток азота во второй половине лета затягивает рост и созревание, вызывает полегание знаков, ухудшает качество зерна, корнеплодов, фруктов. Понижается устойчивость растений к грибковым заболеваниям. Повышается концентрация в растениях биологически несвязанного азота в виде нитратов и нитритов.

Избыток азота приводит к некрозу тканей растений: хлороз развивается сначала на краях листьев, потом распространяется между жилками, появляется некроз с коричневым окрасом, концы листовых пластинок свертываются, листья опадают.

pesticidy.ru

Роль азота в жизни растений - реферат, курсовая работа, диплом. Скачать бесплатно с реф.рф!

Реферат на тему:



РОЛЬ АЗОТА В ЖИЗНИ РАСТЕНИЙ

Опыт экономически развитых стран убедительно показывает, что современное земледелие не может быть высокопродуктивным без применения минеральных и органических удобрений. В отличие от других элементов питания растений, сырьевые ресурсы которых крайне ограничены и/или рассеяны, запасы азота на Земле неиссякаемы и в результате биологических и геохимических процессов постоянно поддерживаются на одном уровне. Свое название азот получил от греч. а — приставка, означающая отсутствие, отрицание, zoo(e) — жизнь; латинское название химического элемента — Nitrogenium происходит от лат. Nitrum — селитра и греч. gennao — рождаю, произвожу. Природный азот состоит из двух стабильных изотопов — l4N (99,63%) и 15N (0,37%). Конфигурация его внешней электронной оболочки 1S22S22P3. Азот имеет восемь степеней окисления — от +5 до -3. Тройная связь между атомами азота (N a N) придает молекуле большую устойчивость из-за высокой энергии (965 кДж/моль), благодаря чему азот обладает самой низкой после инертных газов реакционной способностью.

Атмосфера содержит 78,09% азота по объему, или 75,6% по массе воздуха. Поскольку площадь поверхности Земли — приблизительно 5,2 ■ 1014м2, а атмосферное давление равно 1 кг/см2 (1 атм), при 75,6% азота в воздухе содержание его в атмосфере составляет 4 • 1015т, что равно 7,5 т газообразного азота на 1 м2 поверхности суши или моря. Однако, несмотря на его высокое содержание в атмосфере, практически во всех почвенно-климатических зонах большинство сельскохозяйственных культур пребывают на «голодном азотном пайке» и нуждаются во внесении азота удобрений.

Азот — составная часть многих жизненно важных органических соединений растений. Он входит в состав белков, нуклеиновых кислот, ДНК, РНК, ферментов, аминосахаров, витаминов и других биологически активных веществ. Контролируя синтез белков и ферментов, азот влияет на все процессы обмена веществ в растениях. При сокращении синтеза белков ограничивается образование новых клеток и тем самым — вегетативный рост.

Для питания растений в равной мере пригодны NH+4 и NO-3. Лишь для некоторых растений может иметь преимущество либо аммонийная, либо нитратная формы азота, но большинство растений потребляют азот в обеих этих формах.

В природных условиях азот поступает из почвы в корневую систему растений большей частью в нитратной форме, нежели аммонийной, и это совершенно не связано с их физиологической потребностью, а обусловливается характером трансформации этих форм азота. Аммоний, в отличие от нитратов, не накапливается в почве в большом количестве, поскольку довольно быстро окисляется до нитратов. Кроме того, большая часть аммонийного азота связана с поглощающим комплексом, находящимся в малоподвижном состоянии. Нитраты же находятся в основном в почвенном растворе и с гораздо большей вероятностью, чем аммоний, могут перемешаться в почве и поглощаться корнями растений.Нитраты не принимают непосредственного участия в синтезе аминокислот. В растениях они последовательно восстанавливаются редуктазами до аммония:

Последующее взаимодействие NH, с кетокислотами через промежуточные реакции приводит к образованию аминокислот:

Ферментативные реакции аминирования протекают во всех органах растения, однако наиболее интенсивно синтез аминокислот происходит в листьях, являющихся основным источником углеводов, необходимых для образования соответствующих кетокислот.

При нитратном питании на восстановление нитратов до аммиака и синтез аминокислот требуется значительно больше энергии, нежели при аммиачном, поэтому, когда энергетические ресурсы растений ограничены из-за слабой освещенности и/или пониженной температуры, нитраты могут накапливаться в растениях в значительных количествах.

По мере старения вегетативных органов растений содержащиеся в них белковые соединения подвергаются гидролитическому распаду, доля белкового азота уменьшается, а образующиеся аминокислоты перемешаются в созревающие семена, где они используются на синтез белков. Запасные белки семян синтезируются в основном из аминокислот, поступающих из вегетативных органов растений. 



СОДЕРЖАНИЕ И ФОРМЫ АЗОТА В РАСТЕНИЯХ

Наиболее высокое содержание азота в молодых растениях (4-7%) и их репродуктивных (зерне, семенах) органах. Колебания содержания азота в растениях в большой мере обусловлены влиянием погодных условий и агротехники на процессы питания и созревания. Засуха способствует накоплению азота в зерне злаковых, бобовых масличных, кормовых и других культур и снижению содержания углеводов.

Ниже указано содержание общего азота в основной и побочной продукции зерновых и зернобобовых культур, % от сухой массы (Новиков, 2011):

Приведем содержание общего азота в основной и побочной продукции кормовых и технических культур, % от сухой массы (Новиков, 2011):  

Количество азота, потребляемого за сутки на единицу массы, максимально у молодых растений и с их ростом постепенно уменьшается. Поэтому особенно велика потребность растений в азоте в 

молодом возрасте. Увеличение вегетативной массы растений сопровождается, как правило, снижением содержания азота в силу ростового разбавления, и к периоду цветения содержание азота в сухом веществе уменьшается, а клетчатки — возрастает.

Ниже показано содержание белка и клетчатки в луговых злаковых травах, % от сухой массы (Новиков, 2011):

Сырой белок:                   Сырая клетчатка:

начало трубкования...........24-26     начало трубкования........16—18

середина трубкования........18-20     середина трубкования.....22-24 

При дефиците азота листья становятся светло-зелеными, а при длительном азотном голодании — желтеют и отмирают.

Репродуктивные органы растений (зерно, семена) практически не содержат минеральных форм азота. В зерне никогда не бывает заметного количества нитратов. В вегетативных органах, например в листьях, стеблях и корнеплодах, наряду с азотом белков и нуклеопротеи-дов от 15 до 25% азота содержится в растворимой форме в виде свободных аминокислот, пептидов, амидных соединений (в основном аспарагина и глютамина). В некоторых растениях значительная часть азота входит в состав алкалоидов (кофеина, теобромина, никотина и т.д.) и нитратов. Совокупность минеральных и органических азотсодержащих соединений в растениях принято называть сырым белком (или сырым протеином). Его содержание находят, умножая массовую долю общего азота на коэффициент 6,25 (No6m * 6,25).

Наличие определенного количества нитратного азота присуще всем вегетативным органам (надземным и подземным) растений. Нитраты являются неотъемлемой частью (атрибутом) вегетирующих растений. Более того, они в большом количестве (от 100 до 2500 мг NO3/KГ сырой массы) образуются при прорастании семян, не содержащих, как правило, нитратов (Круг. 2000). Наиболее высоким содержанием нитратов из-за слабой активности нитратредуктазы отличаются растения семейств капустных (крестоцветных), маревых, амарантовых и зонтичных.

В зерне злаковых культур содержание небелкового органического азота в основном в виде аспарагина, глютамина и бетаина составляет 6—10%, в клубнях картофеля — 20—25, в корнеплодах кормовой и сахарной свеклы — 25—30% от общего его количества. У свеклы и других корнеплодов содержание общего и доля белкового азота в листьях выше, чем в корнях.

Наряду с биологической фиксацией, небольшое количество минерального азота (NH+4 и N0-3) поступает в почву с атмосферными осадками: в северных широтах — 3—6 кг/га; в субтропиках — 10—

15 кг/га в год. Исследования, проведенные в полевых условиях в специальных камерах с использованием меченого l5NH3, (Кидин, Замараев, 1989), показали, что доля аммиака атмосферы в общем выносе азота зерновыми культурами, картофелем и кукурузой не превышает 0,5— 1,0% и не имеет практической значимости. 



СОДЕРЖАНИЕ И ФОРМЫ АЗОТА В ПОЧВЕ

Природные запасы азота в почве образованы большей частью в результате фиксации атмосферного азота симбиотическими и свободноживущими микроорганизмами. Определенная часть содержащегося в почвах сельскохозяйственного назначения азота включает также азот внесенных ранее минеральных и органических удобрений. Неоднородность природных и агротехнических условий обусловливает существенные различия в интенсивности процессов азотонакопления и темпах трансформации разных форм азота в почвах.

Общее количество азота в почвах зависит в основном от содержания в них органического вещества и величины гумусового горизонта, так как практически весь азот почвы депонирован в гумусе. Наибольшее количество гумуса содержится в мощных черноземах, где гумусовый горизонт достигает 1,5—2,0 м, а его запасы составляют 600—900 т/га. В дерново-подзолистых почвах запасы гумуса редко превышают 120—140 т/га в связи с низким его содержанием в почвах и ограниченным гумусовым горизонтом. Подавляющая часть азота в дерново-подзолистых почвах сосредоточена в верхнем горизонте (0-25 см).

Гумус в среднем содержит 4-5% азота, однако при длительном использовании почв без внесения органических удобрений его доля в составе гумусовых веществ может возрастать до 6—7 %. Примерно 98% азота пахотного слоя почв входит в состав органических соединений и 2% — в состав минеральных. Содержащийся в почвах аммоний в значительной мере связан необменно в межпакетном пространстве вторичных трехслойных глинистых минералов. В пахотном слое почв доля фиксированного NH.T от общего азота почвы обычно невелика — 3—5%, в подпахотных горизонтах может достигать 40— 50%. Содержание обменного NH* в ППК редко превышает 0,1 — 0,3% от общего содержания азота. Доля нитратного азота (NO-3) в почве сопоставима с долей обменного аммония.

Значительное варьирование содержания нитратов в почвах обусловлено постоянно протекающими процессами аммонификации, нитрификации, денитрификации, применением удобрений, интенсивностью потребления азота растениями и водным режимом. Минеральные соединения азота — нитраты и обменный аммоний характеризуют уровень азотного питания растений.

Скорость минерализации, а следовательно, и доступность растениям азотсодержащих органических соединений, находящихся в почвах, зависит от их химического состава, температуры и влажности. Среднегодовое количество минерализуемого за вегетационный период азота дерново-подзолистой почвы составляет под культурами сплошного сева (пшеницей, ячменем, овсом, травами и др.) примерно 1%, под пропашными культурами (картофелем, свеклой, капустой, кукурузой и др.) — 2%, в парующей почве — 3% от его содержания.

Поданным агрохимической службы, в Московской области ежегодно минерализуется 40—60 кг азота с каждого гектара почвы. В южных областях, где преобладают черноземные почвы, ежегодная минерализация азота достигает 90-120 кг/га.

В нейтральных и слабощелочных почвах большая часть (75—95%) минерального азота представлена нитратами. В зависимости от окультуренности почвы содержание нитратного азота в пахотном слое почвы может варьировать в пределах 10—50 мг/кг, что составляет примерно 30-150 кг/га.

Заметное накопление минерального азота в почве, в том числе нитратов, можно наблюдать лишь до посева, в начальный период развития или после уборки растений. 

При определении доз азота удобрений на планируемую урожайность следует иметь в виду, что в условиях хорошего увлажнения и применения агротехники дерново-подзолистые и серые лесные почвы для создания хорошего урожая способны обеспечить около 40—50% необходимого растениям азота, остальное недостающее количество азота должно быть внесено с удобрениями.Трансформация соединений азота в почве протекает преимущественно под влиянием микроорганизмов. Сложность изучения внутрипочвенных процессов трансформации азота обусловлена тем, что из всех известных сред обитания микроорганизмов почва представляет собой наиболее сложную гетерогенную среду, значительно изменяющуюся во времени и пространстве. В течение вегетационного периода в пределах корнеобитаемого слоя почвы могут происходить значительные микрозональные изменения ее кислотности, влажности, численности и видового состава содержащихся в ней микроорганизмов, содержания в ней кислорода и питательных веществ.

Подавляющее большинство микроорганизмов находятся в почве в виде микроколоний, прикрепленных на поверхности твердой фазы, поэтому они практически не могут свободно перемещаться. Отсюда даже в пределах одной колонии условия аэрации, рН и наличие пищи могут быть различны. Например, в периферийной части колонии микроорганизмы могут находиться в аэробной среде и лучших условиях питания, а внутри колонии — в анаэробных условиях из-за интенсивного потребления O2 внешним слоем бактерий.

Основными процессами внутрипочвенной трансформации азота являются аммонификация, нитрификация, денитрификация (биологическая и химическая), иммобилизация и инфильтрация нитратов в подпахотные слои почвы.  

реферат по дисциплине Сельское, лесное хозяйство и землепользование на тему: Роль азота в жизни растений; понятие и виды, классификация и структура, 2014-2015, 2016 год.

referatwork.ru

Поступление и превращение азота в растениях

Поглощение азота растением

Формы азота, используемые растением. Азот входит в состав важнейшей части живого организма, а именно в состав запасных белков и белков цитоплазмы. В составе золы азота нет, так как при сжигании растений он образует газообразные окислы. В сухом веществе растения содержится в среднем 1,5% азота. Добывание азота представляет для растениянаибольшие трудности, так как азот не входит в состав минералов и его накопление и превращение в почве полностью связано с жизнедеятельностью организмов.

В почве доступный для растения азот находится в основном в форме нитратов аммонийных солей.

Восстановление нитратов растениями. Нитраты представляют собой окисленную форму азота и должны быть восстановлены растением до NH2, после чего они могут войти в состав аминокислот, а затем белка. Можно считать, что восстановление нитратов идет двумя путями:

1) восстановление за счет химической энергии дыхания и 2) фотохимическое восстановление в хлоропластах.

Восстановление нитратов идет этапами: сначала до азотистой кислоты HNO2, затем до гидрокисламина NH2OH и, наконец, до аммиака NH3. Восстановление нитратов до NH3-и NH2-гpyпп осуществляется с помощью фермента нитратредуктазы, в состав кофермента которой входит молибден.

Восстановленный азот нитратов или непосредственно поглощенный ион аммония, соединяясь с продуктами превращения углеводов, образует аминокислоты, а затем белки. Аммиак, реагируя с некоторыми органическими кислотами, может образовать аминокислоты. Так, например, аммиак, реагируя с пировиноградной кислотой, образует аминокислоту аланин:

Образовавшиеся белковые вещества подвергаются превращениям в теле растения. Животный организм все время выводит азот из своего тела в виде мочевины и отчасти мочевой кислоты. В отличие от животных растение очень бережно относится к азоту, не теряя его.

При прорастании семян расщепляются запасные белки, а количество конституционных белков не только не уменьшается, а все время увеличивается. Затем происходит накопление белков в связи с переходом растения к автотрофному питанию.

Роль амида, аспарагина, глютамина и мочевины в растении. При восстановлении нитратов, а также при дезаминировании аминокислот (т.е. отщеплении от них аммиака) в растениях может накопляться аммиак, который ядовит для большинства из них. В растении аммиак обезвреживается, так как он связывается аспарагиновой или глутаминовой кислотой, образуя соответственные амиды (аспарагин, глутамин). У многих низших растений образуется мочения:

Доказан и прямой синтез мочевины из углеводов и аммиака у многих грибов (дождевики, шампиньоны). Содержание мочевины у дождевиков доходит до 10,7% от сухого вещества. Таким образом, аспарагин, глутамин и мочевина играют большую физиологическую роль, так как являются соединениями, обезвреживающими ядовитое действие аммиака, а также представляют собой резерв аминогрупп NH2 в растении для синтеза аминокислот.

Подводя итоги, можно отметить два типа синтеза белков: первичный и вторичный. В обоих этих синтезах аммиак играет большую роль, что и дало возможность Д.Н. Прянишникову сказать, что аммиак есть альфа и омега (первая и последняя буквы греческого алфавита), т.е. начало и конец, превращения белков в растениях. При первичном синтезе из аммиака и углеводов строится белок (левая часть схемы). При распаде белка образуются аминокислоты, от которых при дезаминировании отщепляется аммиак, связывающийся в аспарагин или глютамин. При вторичном синтезе белков (правая и нижняя части схемы) происходит отщепление аммиака от аспарагина и образование аминокислот из углеводов (вернее, из продуктов их превращения) и аммиака. Все эти представления можно объединить в следующую схему Прянишникова:

Усвоение органических форм азота

Стерильные культуры покрытосеменных растений

Долгое время оставался нерешенным вопрос о возможности усвоения корневой системой растений органических форм азота. Вопрос этот можно было решить только в стерильных культурах, так как в нестерильных условиях развились бы бактерии, которые своими ферментами разложили бы органический азот и превратили бы его в минеральные формы. Корневая система высших растений находилась в простерилизованном питательном растворе, содержащем органический азот. Семена растений стерилизовались бромной водой или раствором сулемы.

Опыты показали, что хотя аминокислоты и могут быть усвоены зеленым растением, но это усвоение идет крайне медленно, и растения, выращенные на этих соединениях, всегда отстают в росте от растений, получивших минеральные формы азота.

Насекомоядные растения. Большой интерес представляют высшие растения со своеобразным типом азотистого питания. Сюда относятся некоторые сапрофиты, паразиты, полупаразиты и, наконец, насекомоядные растения. Своеобразие азотистого, а у некоторых форм и углеродного питания возникло в процессе эволюции под влиянием условий существования и естественного отбора. Таким образом, в отличие от грибов и бактерий, где гетеротрофное питание азотом имеет первичный характер, у этих растений оно возникло вторично. Наиболее интересную группу растений, питающихся органическим азотом, составляют насекомоядные растения.

К насекомоядным растениям принадлежит примерно 500 видов растений. Все они обитатели болот. Несмотря на богатство болотных почв органическим веществом, находящийся в этих почвах органический азот недоступен для растений. Болотные почвы также очень бедны и минеральными солями (фосфор, калий и др.). Все насекомоядные растения имеют хлорофилл, т.е.

Ознакомимся с некоторыми представителями насекомоядных растений.

Росянка - многолетнее растение, растет на сфагновых болотах. Каждый год на поверхности мха образуется новая розетка листьев росянки. Листья снабжены многочисленными железистыми волосками (их часто называют щупальцами), выделяющими липкую жидкость, к которой и прилипают мелкие насекомые - комары и мелкие мухи. При прилипании насекомого пластинка листа свертывается. Особенно хорошо это свертывание пластинки видно у вида росянки длиннолистной. После того как насекомое прилипнет к листу, в растении начинается выделение гидролитических ферментов - протеаз, разлагающих белки, и муравьиной кислоты. Кислота способствует работе фермента протеазы, и, кроме того, она действует как яд на бактериальную флору. Последнее очень важно, так как пышное развитие флоры гнилостных бактерий могло бы сказаться отрицательно на самом растении.

Ботаник Фрэнсис Дарвин, сын Чарльза Дарвина, выяснил благоприятное влияние питания росянки насекомыми. Он взял шесть сосудов с растениями росянки и разделил каждый из них перегородкой. По одну сторону перегородки росянки получали мясо, а по другую сторону им его не давали.

В конце опыта выяснилось, что на 100 цветков у контрольной группы, которые не получали мяса, приходится 165 цветков у получавших мясо. Иными словами, репродуктивная способность растений росянки, питавшихся мясом, сильно возрастала.

Большой интерес представляет обитающая в болотистых водоемах пузырчатка. Помимо рассеченных листьев, она несет еще характерные пузыревидно измененные листья. В такой пузырек проникают мелкие рачки и уже не могут выбраться наружу, так как створка, сквозь которую проник рачок, открывается в одну сторону.

Из других насекомоядных растений можно отметить кувшиноносы (непентес) из тропиков Мадагаскара и Явы: австралийский цефалотус и американскую сарацению, листья которых имеют вид кувшинов, куда и попадают насекомые. Эти растения также выделяют гидролизирующие белки-ферменты и переваривают насекомых. У цефалотуса выделения ферментов не происходит.

Многие насекомоядные растения привлекают к себе насекомых яркой окраской листьев, а некоторые выделяют сладкий сок. Так, например, у кувшиноноса в верхней части кувшинчиков имеются железки, выделяющие сладкий сок.

Особенно интересна венерина мухоловка, растущая на болотах штата Каролина в Северной Америке. Это небольшое растение активно захлопывает створки листьев, когда насекомое заденет чувствительный волосок его листа.

Симбиоз и паразитизм. Особую группу покрытосеменных растений составляют сапрофиты. Встречаются они на богатой органическими веществами почве, в лесах, среди разлагающейся лесной подстилки. К ним относятся такие растения, как подъельник и орхидея гнездовка. Оба эти растения бесцветны. Правда, в листьях гнездовки содержится небольшое количество хлорофилла а, хлорофилла б у нее совсем не найдено.

Подъельник - растение-сапрофит, лишенное хлорофилла. По-видимому, гриб снабжает подъельник углеводами и азотистыми веществами из малодоступного для растения перегноя, очевидно, получая от растения физиологически активные вещества (витамины), а также, возможно, и аминокислоты. Выращивая сосну в стерильных условиях и затем заражая ее определенным видом гриба (эктотрофная микориза), удалось экспериментально доказать наличие связи между высшим растением и грибом. При наблюдениях за растениями и грибами в природной обстановке выявилась тесная связь между определенными грибами и высшими растениями. По меткому выражению одного ученого, гриб кортинариус следует за березой, как "дельфин за кораблем". Большинство наших съедобных грибов образуют эктотрофную микоризу и тесно связано с определенными деревьями. Это давно отмечено в названиях грибов.

В настоящее время показано, что семена орхидеи содержат очень незначительные количества витамина РР (никотиновой кислоты). Грибок снабжает семена орхидеи никотиновой кислотой, после чего они и начинают прорастать. Кроме того, синтез витамина Bi также несколько затруднен у орхидей, и снабжение семян этими веществами способствует их прорастанию и росту корней и надземной массы.

Большинство травянистых дикорастущих и культурных растений также содержат эндотрофную микоризу, вызываемую низшими грибами, имеющими неразделенный перегородками мицелий. Отмечено, что при неблагоприятных условиях, например при сильном увлажнении, гриб часто становится паразитом растения. По-видимому, и в случае эндотрофной микоризы гриб снабжает растение азотом, добывая его из перегноя, а от растения получает углеводы, а также физиологически активные вещества.

К последней группе растений, отклоняющихся в своем азотистом питании, относятся полупаразиты и паразиты. По-видимому, путь к паразитизму у высших растений лежал и лежит через полупаразитизм.

Много полупаразитов встречается в семействе норичниковых. Среди полупаразитов из норичниковых можно отметить характерные растения лугов: погремок, очанку и др. Растения эти присасываются своими корнями к корням других растений. Одни из них сохраняют более или менее нормальную зеленую окраску, а другие уже значительно меньше содержат хлорофилла (как, например, погремок). Основной причиной перехода этих растений к паразитическому образу жизни является слабое развитие корневой системы, вследствие чего они не могут свести своего водного баланса.

Из полных паразитов можно упомянуть о видах заразихи, поражающей подсолнечник, тыквенные и ряд дикорастущих растений. Мелкие семена заразихи прорастают, стимулируемые подкислением субстрата корневыми выделениями. Основным мероприятием по борьбе с заразихой является создание невосприимчивых (иммунных) сортов.

Паразит повилика в отличие от заразихи, которая поражает корни, обвивает растение и присасывается к его стеблю. У повилики имеется очень незначительное количество хлорофилла. Проросток повилики совершает круговое движение, свойственное всем растениям, но у повилики оно проявляется особенно резко. Если при этом повилика не встретит растения, вокруг которого она может обвиться, то она погибает.

Усвоение молекулярного азота микроорганизмами

Клубеньковые бактерии. Способность бобовых растений использовать атмосферный азот была доказана опытами немецких ученых Г. Гельригеля и Г. Вильфарта в 1886 г. Им удалось показать, что, посеянные в прогретый песок, в котором убиты все бактерии, бобовые растения, не образующие в этом случае клубеньков, не усваивают (не фиксируют) атмосферный азот, а растут лишь при наличии его в виде сортветственных солей в песке. Впоследствии бактерии были выделены в чистую культуру и названы клубеньковыми бактериями. Оказалось, что, прекрасно развиваясь на питательных средах, клубеньковые бактерии обычно не фиксируют при этом атмосферного азота. Усвоение азота воздуха идет у них беспрепятственно только в симбиозе (сожительстве) с бобовыми растениями.

Характер симбиоза. Находящиеся в почве клубеньковые бактерии проникают в корень бобового растения и здесь начинают размножаться, образуя сплошной тяж бактерий, идущий через ряд клеток. Бактерии интенсивно делятся и заполняют клетки корня. Бобовое растение не остается инертным по отношению к проникшей бактерии, а реагирует усиленным делением клеток, разрастающихся в виде клубеньков или желваков. Клубеньковые бактерии приносят растению пользу, снабжая его азотом.

Специфичность клубеньковых бактерий. Клубеньковые бактерии, поселяющиеся на корнях клевера, не заражают никакой другой бобовой культуры. Клубеньковые бактерии, развивающиеся на горохе, могут, кроме гороха, заражать вику, чечевицу, чину и конские бобы. Иными словами, клубеньковые бактерии образуют специфические расы, заражающие только определенные виды бобовых растений.

Вирулентность клубеньковых бактерий. Вирулентностью бактерий называется их способность заражать данное растение. Очень часто клубеньковые бактерии оказываются маловирулентными, т.е. не заражают или плохо заражают бобовые растения.

Активность клубеньковых бактерий. Помимо вирулентности, важное значение имеет и активность данной расы бактерий. Раса клубеньковой бактерии может быть очень вирулентной, но в то же время неактивной, т.е. она может давать много клубеньков, но не усваивать атмосферного азота.

Бактериальное удобрение нитрагин. Фактически очень часто даже на землях, где десятилетиями культивировались мотыльковые растения, на корнях образуется очень небольшое число клубеньков или даже их совсем не образуется. Для того чтобы обеспечить наличие активных клубеньков, мотыльковые растения перед посевом можно заразить бактериальным препаратом, состоящим обычно из нескольких рас клубеньковых бактерий. Такой бактериальный препарат получил название нитрагин.

Другие азотфиксирующие симбиотические организмы. Помимо клубеньковых бактерий, в природе встречаются и другие аналогичные симбиозы. На корнях ольхи образуются большие деревянистые вздутия (клубеньки), в которых находятся актиномицеты, фиксирующие атмосферный азот.

Свободноживущие азотфиксаторы. Помимо клубеньковых бактерий, в почве встречаются еще и другие виды, способные усваивать атмосферный азот. Выделить подобную бактерию удалось С.Н. Виноградскому в 1893 г. на специальной среде для азотфиксирующих бактерий. Для этой цели он взял среду, содержащую глюкозу и некоторые соли, но абсолютно не содержащую связанного азота ни в органической, ни в минеральной форме. Таким образом, в этой среде могли развиваться только те бактерии, которые усваивают азот из воздуха. Кроме того, опыт был поставлен в анаэробных условиях, т.е. без доступа кислорода. В этих условиях удалось выделить бактерию, вызывающую масляно-кислое брожение, хорошо фиксирующую атмосферный азот, - клостридиум пастерианум.

Свое видовое название бактерия получила в честь Пастера, а родовое - от латинского слова "клострум" - веретено. Клостридиум является сравнительно крупной палочкой, в 3 - 4 мкм длины, дающей споры. Во время спорообразования клетка клостридиума вздувается в виде веретена. Клостридиум имеет жгутики, расположенные по всей поверхности тела, и может сравнительно быстро перемещаться. В лабораторных условиях клостридиум фиксирует атмосферный азот, хотя и в небольших, но заметных количествах от 1 до 5 мг азота на 1 г использованного сахара. Клостридиум - очень широко распространенная бактерия, встречающаяся в самых разнообразных почвах - кислых, нейтральных и щелочных.

Азотобактер. Другой азотфиксирующей бактерией является азотобактер, открытый в 1901 г. Азотобактер в отличие от клостридиума - форма аэробная, развивающаяся при широком доступе кислорода. Азотобактер имеет характерную форму удлиненного кокка, делящегося не путем появления поперечной перегородки, а перетяжкой (Рис.60). Клетки азотобактера довольно крупные. Размер их колеблется от 1 до 10 мкм. Клетки окружает слизистая капсула. Форма азотобактера не остается без изменения. В молодом возрасте он имеет форму очень толстой палочки, затем эллиптическую, а часто и совсем округлую форму. Фиксация азота азотобактером более интенсивна, чем у клостридиума, а именно от 2 до 12 и даже до 20 мг азота на 1 г сахара. Азотобактер очень чувствителен к реакции среды. Оптимум для его развития будет при рН = 7,0 или 7,2, максимум - при рН = 9,0. В почвах, имеющих рН ниже 5,6, он обычно не встречается.

Механизм фиксации азота не может считаться до сего времени полностью выясненным. Наиболее вероятное предположение заключается в том, что водород при брожении у клостридиума и при дыхании у азотобактера выделяется не в молекулярном (Нг) виде, а в форме атомного водорода (2Н). Вот этот-то активный атомный водород и способен связывать молекулярный азот атмосферы в виде аммиака. В последнее время, применяя тяжелый азот (l5N2), удалось показать значительную достоверность этой точки зрения.

Установлено, что многие сине-зеленые водоросли также фиксируют атмосферный азот.

Азотобактерин. Существует препарат азотобактера для заражения семян, названный азотобактерином. Азотобактерин готовится на аграрной среде в бутылках. Для заражения порции семян на 1 га требуется этого препарата всего 10 - 15 г. Многочисленные опыты дали очень неустойчивые результаты при применении азотобактерина. Лучше всего на азотобактерин реагируют некоторые овощные культуры.

Величины фиксации азота бактериями. Фиксация азота азотфиксирующими бактериями достигает значительных величин. Клевер за счет бактерий накапливает ежегодно в среднем 150-160 кг азота на 1 га, люцерна - около 300 кг, люпин - до 160 кг. Однолетние бобовые фиксируют значительно меньшие количества азота. Так, например, соя фиксирует из воздуха в год около 100, вика - 80, горох - около 60, фасоль - около 70 кг.

Бактерии в почве и их роль в круговороте веществ в природе

Число бактерий в почве. В почве содержится огромное число бактерий. Раньше их число измерялось сотнями тысяч на один грамм почвы. С.Н. Виноградский (1924) разработал метод непосредственного микроскопического подсчета бактерий в почве путем их окраски. После этого стало ясно, что число бактерий измеряется сотнями миллионов в 1 г. В бедных тундровых или песчаных почвах пустыни их насчитывается до J500 миллионов, в слабоподзолистых почвах - до одного миллиарда, а в богатых органическим веществом (чернозем) - до двух миллиардов и выше.

Два миллиарда бактерий в 1 г почвы составляют около 3% сухой массы почвы. Такое большое число бактерий позволяет считать, что большинство процессов, происходящих в почве, носит биологический характер, т.е. связано с жизнедеятельностью бактерий.

Если бы процесс накопления азота, так же как и углерода, шел только в одну сторону, то жизнь стала бы скоро на Земле невозможной из-за обилия неразложившихся органических остатков. Мы уже знаем, что жизнедеятельность бактерий является причиной разложения белковых веществ.

Разложение белков бактериями. Бактерии, разлагающие белковые вещества на более простые составные части, называются гнилостными бактериями или аммонификаторами, так как в результате разложения белков в среде накапливается аммиак. Разлагая сложные белковые вещества на простые минеральные соединения, бактерии сами питаются продуктами разложения и размножаются. Однако образуемая ими масса тел составляет лишь ничтожную долю от разложившегося вещества. В этой минерализующей деятельности и заключается та огромная полезная роль гнилостных бактерий, которую они играют в природе.

Процесс гниения протекает как в анаэробных, так и в аэробных условиях. Особенно быстро он проходит в аэробных условиях.

В факультативно-анаэробных условиях гниение белков осуществляется целым рядом бактерий. Из них можно отметить кишечную палочку и протея.

В аэробных условиях разложение белков производит сенная палочка и другие спорообразующие формы. Из неспоро-образующих форм можно упомянуть небольшую палочку (1-2 мкм) - псевдомонас.

При гниении образуются вода, углекислый газ, аммиак, сероводород, метилмеркаптан (CH3SH). Очень характерными продуктами анаэробного расщепления белков являются дурно пахнущие продукты индол и скатол, возникающие в результате частичного разрушения аминокислоты триптофана в анаэробных условиях.

Высушенное белковое вещество не разлагается бактериями и может сохраняться очень долго. Сушеное или прокопченное мясо, сухой яичный порошок не портятся, если их хранить всухом месте.

Разложение мочевины. Одной из специальных групп аммонификаторов являются бактерии, разлагающие мочевину. Мочевина - главная составная часть мочи человека и большинства животных. Человек выделяет бактерии, разлагающие в день от 30 до 50 г мочевины. Под влиянием бактерий мочевина разлагается, образуется карбонат аммония. Последний быстро распадается на воду, аммиак и углекислый газ.

Процесс нитрификации. Образовавшийся в результате аммонификации аммиак или используется высшими растениями, или нитрифицируется. Процесс нитрификации заключается в окислении аммиака до азотной кислоты. Первая фаза нитрификации вызывается микробом, окисляющим аммиак до азотистой кислоты. Он получил название нитрозомонас. Вторая фаза вызывается бактерией нитробактер, окисляющей азотистую кислоту до азотной. В почве азотистая кислота не накапливается, так как обе эти бактерии встречаются всегда вместе, находясь в своеобразном симбиозе.

Нитрозомонас представляет собой снабженную жгутиком шарообразную бактерию, а нитробактер неподвижен и является маленькой палочкой. На первом этапе нитрификации выделяется больше энергии, чем на втором.

В первой фазе нитрификации выделяется 663,6 Дж (или 158 кал):

Во второй фазе нитрификации энергии освобождается значительно меньше:

Нитрификаторы синтезируют органическое вещество путем хемосинтеза за счет энергии окисления аммиака в азотистую кислоту, а азотистой кислоты в азотную. Нитрификаторы, так же как и зеленые растения, используют для питания углекислый газ.

С.Н. Виноградский обнаружил очень высокую чувствительность нитрификаторов к органическому веществу, которое действует на них как яд, причем нитрозомонас более чувствителен к органическому веществу, чем нитробактер. Малые концентрации органического вещества задерживают рост бактерий, а несколько большие окончательно его останавливают.

Нитрификация в почве. Нитрификация в почве идет несколько отлично от нитрификации в лабораторной обстановке. В первую очередь это касается влияния на этот процесс органического вещества. Если в лабораторной обстановке нитрификаторы проявляют очень высокую чувствительность к органическому веществу и в его присутствии не растут, то в природной обстановке наблюдается как раз обратная картина. Наличие органического вещества способствует процессу нитрификации, так как является источником образования аммиака.

Процесс денитрификации. С круговоротом азота в природе связан также и процесс денитрификации, обратный по своей сути процессу азотфиксации. Денитрификацией называется процесс восстановления нитратов до свободного азота.

Процесс денитрификации, в отличие от нитрификации и азотфиксации, вызывается целым рядом малоспецифических микроорганизмов, относящихся к неспороносным палочкам. Денитрифицирующие бактерии являются факультативными анаэробами. В условиях широкого доступа кислорода они денитрификации не производят. Стоит им, однако, попасть в анаэробные условия, как при наличии нитратов и доступного им органического вещества начинается процесс денитрификации. При нехватке кислорода микроорганизмы начинают отнимать его от нитратов, восстанавливая их. Одновременно при этом окисляется усвояемое ими органическое вещество - сахара или соли органических кислот. Наилучшими условиями для протекания процесса денитрификации являются анаэробные условия, наличие нитратов и подходящего для микроорганизмов органического вещества.

Круговорот азота в природе. Подведем итоги по круговороту азота в природе. Высшее растение синтезирует белок в своем теле из связанного минерального азота и углеводов. Растения поедаются животными, которые сами не в состоянии синтезировать белки из углеводов и минерального азота. Отмирая, животные и растения становятся пищей гнилостных бактерий, разлагающих белки до аммиака, эти же бактерии разлагают и белки, находящиеся в навозе. Аммиак усваивается растением или нитрифицируется. Азотфиксаторы связывают атмосферный азот и переводят опять в белковый, который в дальнейшем может разлагаться гнилостными бактериями. Здесь следует еще упомянуть о связывании азота электрическими разрядами в атмосфере, который в виде азотной кислоты с дождем попадает в почву. Так происходит круговорот азота в природе; он переходит из одной формы в другую, подтверждая великий закон природы - закон сохранения вещества, открытый М.В. Ломоносовым.

vevivi.ru

Поступление и превращение азота в растениях

Поглощение азота растением

Формы азота, используемые растением. Азот входит в состав важнейшей части живого организма, а именно в состав запасных белков и белков цитоплазмы. В составе золы азота нет, так как при сжигании растений он образует газообразные окислы. В сухом веществе растения содержится в среднем 1,5% азота. Добывание азота представляет для растениянаибольшие трудности, так как азот не входит в состав минералов и его накопление и превращение в почве полностью связано с жизнедеятельностью организмов.

В почве доступный для растения азот находится в основном в форме нитратов аммонийных солей.

Восстановление нитратов растениями. Нитраты представляют собой окисленную форму азота и должны быть восстановлены растением до NH2, после чего они могут войти в состав аминокислот, а затем белка. Можно считать, что восстановление нитратов идет двумя путями:

1) восстановление за счет химической энергии дыхания и 2) фотохимическое восстановление в хлоропластах.

Восстановление нитратов идет этапами: сначала до азотистой кислоты HNO2, затем до гидрокисламина NH2OH и, наконец, до аммиака NH3. Восстановление нитратов до NH3-и NH2-гpyпп осуществляется с помощью фермента нитратредуктазы, в состав кофермента которой входит молибден.

Восстановленный азот нитратов или непосредственно поглощенный ион аммония, соединяясь с продуктами превращения углеводов, образует аминокислоты, а затем белки. Аммиак, реагируя с некоторыми органическими кислотами, может образовать аминокислоты. Так, например, аммиак, реагируя с пировиноградной кислотой, образует аминокислоту аланин:

Образовавшиеся белковые вещества подвергаются превращениям в теле растения. Животный организм все время выводит азот из своего тела в виде мочевины и отчасти мочевой кислоты. В отличие от животных растение очень бережно относится к азоту, не теряя его.

При прорастании семян расщепляются запасные белки, а количество конституционных белков не только не уменьшается, а все время увеличивается. Затем происходит накопление белков в связи с переходом растения к автотрофному питанию.

Роль амида, аспарагина, глютамина и мочевины в растении. При восстановлении нитратов, а также при дезаминировании аминокислот (т.е. отщеплении от них аммиака) в растениях может накопляться аммиак, который ядовит для большинства из них. В растении аммиак обезвреживается, так как он связывается аспарагиновой или глутаминовой кислотой, образуя соответственные амиды (аспарагин, глутамин). У многих низших растений образуется мочения:

Доказан и прямой синтез мочевины из углеводов и аммиака у многих грибов (дождевики, шампиньоны). Содержание мочевины у дождевиков доходит до 10,7% от сухого вещества. Таким образом, аспарагин, глутамин и мочевина играют большую физиологическую роль, так как являются соединениями, обезвреживающими ядовитое действие аммиака, а также представляют собой резерв аминогрупп NH2 в растении для синтеза аминокислот.

Подводя итоги, можно отметить два типа синтеза белков: первичный и вторичный. В обоих этих синтезах аммиак играет большую роль, что и дало возможность Д.Н. Прянишникову сказать, что аммиак есть альфа и омега (первая и последняя буквы греческого алфавита), т.е. начало и конец, превращения белков в растениях. При первичном синтезе из аммиака и углеводов строится белок (левая часть схемы). При распаде белка образуются аминокислоты, от которых при дезаминировании отщепляется аммиак, связывающийся в аспарагин или глютамин. При вторичном синтезе белков (правая и нижняя части схемы) происходит отщепление аммиака от аспарагина и образование аминокислот из углеводов (вернее, из продуктов их превращения) и аммиака. Все эти представления можно объединить в следующую схему Прянишникова:

Усвоение органических форм азота

Стерильные культуры покрытосеменных растений

Долгое время оставался нерешенным вопрос о возможности усвоения корневой системой растений органических форм азота. Вопрос этот можно было решить только в стерильных культурах, так как в нестерильных условиях развились бы бактерии, которые своими ферментами разложили бы органический азот и превратили бы его в минеральные формы. Корневая система высших растений находилась в простерилизованном питательном растворе, содержащем органический азот. Семена растений стерилизовались бромной водой или раствором сулемы.

Опыты показали, что хотя аминокислоты и могут быть усвоены зеленым растением, но это усвоение идет крайне медленно, и растения, выращенные на этих соединениях, всегда отстают в росте от растений, получивших минеральные формы азота.

Насекомоядные растения. Большой интерес представляют высшие растения со своеобразным типом азотистого питания. Сюда относятся некоторые сапрофиты, паразиты, полупаразиты и, наконец, насекомоядные растения. Своеобразие азотистого, а у некоторых форм и углеродного питания возникло в процессе эволюции под влиянием условий существования и естественного отбора. Таким образом, в отличие от грибов и бактерий, где гетеротрофное питание азотом имеет первичный характер, у этих растений оно возникло вторично. Наиболее интересную группу растений, питающихся органическим азотом, составляют насекомоядные растения.

К насекомоядным растениям принадлежит примерно 500 видов растений. Все они обитатели болот. Несмотря на богатство болотных почв органическим веществом, находящийся в этих почвах органический азот недоступен для растений. Болотные почвы также очень бедны и минеральными солями (фосфор, калий и др.). Все насекомоядные растения имеют хлорофилл, т.е.

Ознакомимся с некоторыми представителями насекомоядных растений.

Росянка - многолетнее растение, растет на сфагновых болотах. Каждый год на поверхности мха образуется новая розетка листьев росянки. Листья снабжены многочисленными железистыми волосками (их часто называют щупальцами), выделяющими липкую жидкость, к которой и прилипают мелкие насекомые - комары и мелкие мухи. При прилипании насекомого пластинка листа свертывается. Особенно хорошо это свертывание пластинки видно у вида росянки длиннолистной. После того как насекомое прилипнет к листу, в растении начинается выделение гидролитических ферментов - протеаз, разлагающих белки, и муравьиной кислоты. Кислота способствует работе фермента протеазы, и, кроме того, она действует как яд на бактериальную флору. Последнее очень важно, так как пышное развитие флоры гнилостных бактерий могло бы сказаться отрицательно на самом растении.

Ботаник Фрэнсис Дарвин, сын Чарльза Дарвина, выяснил благоприятное влияние питания росянки насекомыми. Он взял шесть сосудов с растениями росянки и разделил каждый из них перегородкой. По одну сторону перегородки росянки получали мясо, а по другую сторону им его не давали.

В конце опыта выяснилось, что на 100 цветков у контрольной группы, которые не получали мяса, приходится 165 цветков у получавших мясо. Иными словами, репродуктивная способность растений росянки, питавшихся мясом, сильно возрастала.

Большой интерес представляет обитающая в болотистых водоемах пузырчатка. Помимо рассеченных листьев, она несет еще характерные пузыревидно измененные листья. В такой пузырек проникают мелкие рачки и уже не могут выбраться наружу, так как створка, сквозь которую проник рачок, открывается в одну сторону.

Из других насекомоядных растений можно отметить кувшиноносы (непентес) из тропиков Мадагаскара и Явы: австралийский цефалотус и американскую сарацению, листья которых имеют вид кувшинов, куда и попадают насекомые. Эти растения также выделяют гидролизирующие белки-ферменты и переваривают насекомых. У цефалотуса выделения ферментов не происходит.

Многие насекомоядные растения привлекают к себе насекомых яркой окраской листьев, а некоторые выделяют сладкий сок. Так, например, у кувшиноноса в верхней части кувшинчиков имеются железки, выделяющие сладкий сок.

Особенно интересна венерина мухоловка, растущая на болотах штата Каролина в Северной Америке. Это небольшое растение активно захлопывает створки листьев, когда насекомое заденет чувствительный волосок его листа.

Симбиоз и паразитизм. Особую группу покрытосеменных растений составляют сапрофиты. Встречаются они на богатой органическими веществами почве, в лесах, среди разлагающейся лесной подстилки. К ним относятся такие растения, как подъельник и орхидея гнездовка. Оба эти растения бесцветны. Правда, в листьях гнездовки содержится небольшое количество хлорофилла а, хлорофилла б у нее совсем не найдено.

Подъельник - растение-сапрофит, лишенное хлорофилла. По-видимому, гриб снабжает подъельник углеводами и азотистыми веществами из малодоступного для растения перегноя, очевидно, получая от растения физиологически активные вещества (витамины), а также, возможно, и аминокислоты. Выращивая сосну в стерильных условиях и затем заражая ее определенным видом гриба (эктотрофная микориза), удалось экспериментально доказать наличие связи между высшим растением и грибом. При наблюдениях за растениями и грибами в природной обстановке выявилась тесная связь между определенными грибами и высшими растениями. По меткому выражению одного ученого, гриб кортинариус следует за березой, как "дельфин за кораблем". Большинство наших съедобных грибов образуют эктотрофную микоризу и тесно связано с определенными деревьями. Это давно отмечено в названиях грибов.

В настоящее время показано, что семена орхидеи содержат очень незначительные количества витамина РР (никотиновой кислоты). Грибок снабжает семена орхидеи никотиновой кислотой, после чего они и начинают прорастать. Кроме того, синтез витамина Bi также несколько затруднен у орхидей, и снабжение семян этими веществами способствует их прорастанию и росту корней и надземной массы.

Большинство травянистых дикорастущих и культурных растений также содержат эндотрофную микоризу, вызываемую низшими грибами, имеющими неразделенный перегородками мицелий. Отмечено, что при неблагоприятных условиях, например при сильном увлажнении, гриб часто становится паразитом растения. По-видимому, и в случае эндотрофной микоризы гриб снабжает растение азотом, добывая его из перегноя, а от растения получает углеводы, а также физиологически активные вещества.

К последней группе растений, отклоняющихся в своем азотистом питании, относятся полупаразиты и паразиты. По-видимому, путь к паразитизму у высших растений лежал и лежит через полупаразитизм.

Много полупаразитов встречается в семействе норичниковых. Среди полупаразитов из норичниковых можно отметить характерные растения лугов: погремок, очанку и др. Растения эти присасываются своими корнями к корням других растений. Одни из них сохраняют более или менее нормальную зеленую окраску, а другие уже значительно меньше содержат хлорофилла (как, например, погремок). Основной причиной перехода этих растений к паразитическому образу жизни является слабое развитие корневой системы, вследствие чего они не могут свести своего водного баланса.

Из полных паразитов можно упомянуть о видах заразихи, поражающей подсолнечник, тыквенные и ряд дикорастущих растений. Мелкие семена заразихи прорастают, стимулируемые подкислением субстрата корневыми выделениями. Основным мероприятием по борьбе с заразихой является создание невосприимчивых (иммунных) сортов.

Паразит повилика в отличие от заразихи, которая поражает корни, обвивает растение и присасывается к его стеблю. У повилики имеется очень незначительное количество хлорофилла. Проросток повилики совершает круговое движение, свойственное всем растениям, но у повилики оно проявляется особенно резко. Если при этом повилика не встретит растения, вокруг которого она может обвиться, то она погибает.

Усвоение молекулярного азота микроорганизмами

Клубеньковые бактерии. Способность бобовых растений использовать атмосферный азот была доказана опытами немецких ученых Г. Гельригеля и Г. Вильфарта в 1886 г. Им удалось показать, что, посеянные в прогретый песок, в котором убиты все бактерии, бобовые растения, не образующие в этом случае клубеньков, не усваивают (не фиксируют) атмосферный азот, а растут лишь при наличии его в виде сортветственных солей в песке. Впоследствии бактерии были выделены в чистую культуру и названы клубеньковыми бактериями. Оказалось, что, прекрасно развиваясь на питательных средах, клубеньковые бактерии обычно не фиксируют при этом атмосферного азота. Усвоение азота воздуха идет у них беспрепятственно только в симбиозе (сожительстве) с бобовыми растениями.

Характер симбиоза. Находящиеся в почве клубеньковые бактерии проникают в корень бобового растения и здесь начинают размножаться, образуя сплошной тяж бактерий, идущий через ряд клеток. Бактерии интенсивно делятся и заполняют клетки корня. Бобовое растение не остается инертным по отношению к проникшей бактерии, а реагирует усиленным делением клеток, разрастающихся в виде клубеньков или желваков. Клубеньковые бактерии приносят растению пользу, снабжая его азотом.

Специфичность клубеньковых бактерий. Клубеньковые бактерии, поселяющиеся на корнях клевера, не заражают никакой другой бобовой культуры. Клубеньковые бактерии, развивающиеся на горохе, могут, кроме гороха, заражать вику, чечевицу, чину и конские бобы. Иными словами, клубеньковые бактерии образуют специфические расы, заражающие только определенные виды бобовых растений.

Вирулентность клубеньковых бактерий. Вирулентностью бактерий называется их способность заражать данное растение. Очень часто клубеньковые бактерии оказываются маловирулентными, т.е. не заражают или плохо заражают бобовые растения.

Активность клубеньковых бактерий. Помимо вирулентности, важное значение имеет и активность данной расы бактерий. Раса клубеньковой бактерии может быть очень вирулентной, но в то же время неактивной, т.е. она может давать много клубеньков, но не усваивать атмосферного азота.

Бактериальное удобрение нитрагин. Фактически очень часто даже на землях, где десятилетиями культивировались мотыльковые растения, на корнях образуется очень небольшое число клубеньков или даже их совсем не образуется. Для того чтобы обеспечить наличие активных клубеньков, мотыльковые растения перед посевом можно заразить бактериальным препаратом, состоящим обычно из нескольких рас клубеньковых бактерий. Такой бактериальный препарат получил название нитрагин.

Другие азотфиксирующие симбиотические организмы. Помимо клубеньковых бактерий, в природе встречаются и другие аналогичные симбиозы. На корнях ольхи образуются большие деревянистые вздутия (клубеньки), в которых находятся актиномицеты, фиксирующие атмосферный азот.

Свободноживущие азотфиксаторы. Помимо клубеньковых бактерий, в почве встречаются еще и другие виды, способные усваивать атмосферный азот. Выделить подобную бактерию удалось С.Н. Виноградскому в 1893 г. на специальной среде для азотфиксирующих бактерий. Для этой цели он взял среду, содержащую глюкозу и некоторые соли, но абсолютно не содержащую связанного азота ни в органической, ни в минеральной форме. Таким образом, в этой среде могли развиваться только те бактерии, которые усваивают азот из воздуха. Кроме того, опыт был поставлен в анаэробных условиях, т.е. без доступа кислорода. В этих условиях удалось выделить бактерию, вызывающую масляно-кислое брожение, хорошо фиксирующую атмосферный азот, - клостридиум пастерианум.

Свое видовое название бактерия получила в честь Пастера, а родовое - от латинского слова "клострум" - веретено. Клостридиум является сравнительно крупной палочкой, в 3 - 4 мкм длины, дающей споры. Во время спорообразования клетка клостридиума вздувается в виде веретена. Клостридиум имеет жгутики, расположенные по всей поверхности тела, и может сравнительно быстро перемещаться. В лабораторных условиях клостридиум фиксирует атмосферный азот, хотя и в небольших, но заметных количествах от 1 до 5 мг азота на 1 г использованного сахара. Клостридиум - очень широко распространенная бактерия, встречающаяся в самых разнообразных почвах - кислых, нейтральных и щелочных.

Азотобактер. Другой азотфиксирующей бактерией является азотобактер, открытый в 1901 г. Азотобактер в отличие от клостридиума - форма аэробная, развивающаяся при широком доступе кислорода. Азотобактер имеет характерную форму удлиненного кокка, делящегося не путем появления поперечной перегородки, а перетяжкой (Рис.60). Клетки азотобактера довольно крупные. Размер их колеблется от 1 до 10 мкм. Клетки окружает слизистая капсула. Форма азотобактера не остается без изменения. В молодом возрасте он имеет форму очень толстой палочки, затем эллиптическую, а часто и совсем округлую форму. Фиксация азота азотобактером более интенсивна, чем у клостридиума, а именно от 2 до 12 и даже до 20 мг азота на 1 г сахара. Азотобактер очень чувствителен к реакции среды. Оптимум для его развития будет при рН = 7,0 или 7,2, максимум - при рН = 9,0. В почвах, имеющих рН ниже 5,6, он обычно не встречается.

Механизм фиксации азота не может считаться до сего времени полностью выясненным. Наиболее вероятное предположение заключается в том, что водород при брожении у клостридиума и при дыхании у азотобактера выделяется не в молекулярном (Нг) виде, а в форме атомного водорода (2Н). Вот этот-то активный атомный водород и способен связывать молекулярный азот атмосферы в виде аммиака. В последнее время, применяя тяжелый азот (l5N2), удалось показать значительную достоверность этой точки зрения.

Установлено, что многие сине-зеленые водоросли также фиксируют атмосферный азот.

Азотобактерин. Существует препарат азотобактера для заражения семян, названный азотобактерином. Азотобактерин готовится на аграрной среде в бутылках. Для заражения порции семян на 1 га требуется этого препарата всего 10 - 15 г. Многочисленные опыты дали очень неустойчивые результаты при применении азотобактерина. Лучше всего на азотобактерин реагируют некоторые овощные культуры.

Величины фиксации азота бактериями. Фиксация азота азотфиксирующими бактериями достигает значительных величин. Клевер за счет бактерий накапливает ежегодно в среднем 150-160 кг азота на 1 га, люцерна - около 300 кг, люпин - до 160 кг. Однолетние бобовые фиксируют значительно меньшие количества азота. Так, например, соя фиксирует из воздуха в год около 100, вика - 80, горох - около 60, фасоль - около 70 кг.

Бактерии в почве и их роль в круговороте веществ в природе

Число бактерий в почве. В почве содержится огромное число бактерий. Раньше их число измерялось сотнями тысяч на один грамм почвы. С.Н. Виноградский (1924) разработал метод непосредственного микроскопического подсчета бактерий в почве путем их окраски. После этого стало ясно, что число бактерий измеряется сотнями миллионов в 1 г. В бедных тундровых или песчаных почвах пустыни их насчитывается до J500 миллионов, в слабоподзолистых почвах - до одного миллиарда, а в богатых органическим веществом (чернозем) - до двух миллиардов и выше.

Два миллиарда бактерий в 1 г почвы составляют около 3% сухой массы почвы. Такое большое число бактерий позволяет считать, что большинство процессов, происходящих в почве, носит биологический характер, т.е. связано с жизнедеятельностью бактерий.

Если бы процесс накопления азота, так же как и углерода, шел только в одну сторону, то жизнь стала бы скоро на Земле невозможной из-за обилия неразложившихся органических остатков. Мы уже знаем, что жизнедеятельность бактерий является причиной разложения белковых веществ.

Разложение белков бактериями. Бактерии, разлагающие белковые вещества на более простые составные части, называются гнилостными бактериями или аммонификаторами, так как в результате разложения белков в среде накапливается аммиак. Разлагая сложные белковые вещества на простые минеральные соединения, бактерии сами питаются продуктами разложения и размножаются. Однако образуемая ими масса тел составляет лишь ничтожную долю от разложившегося вещества. В этой минерализующей деятельности и заключается та огромная полезная роль гнилостных бактерий, которую они играют в природе.

Процесс гниения протекает как в анаэробных, так и в аэробных условиях. Особенно быстро он проходит в аэробных условиях.

В факультативно-анаэробных условиях гниение белков осуществляется целым рядом бактерий. Из них можно отметить кишечную палочку и протея.

В аэробных условиях разложение белков производит сенная палочка и другие спорообразующие формы. Из неспоро-образующих форм можно упомянуть небольшую палочку (1-2 мкм) - псевдомонас.

При гниении образуются вода, углекислый газ, аммиак, сероводород, метилмеркаптан (CH3SH). Очень характерными продуктами анаэробного расщепления белков являются дурно пахнущие продукты индол и скатол, возникающие в результате частичного разрушения аминокислоты триптофана в анаэробных условиях.

Высушенное белковое вещество не разлагается бактериями и может сохраняться очень долго. Сушеное или прокопченное мясо, сухой яичный порошок не портятся, если их хранить всухом месте.

Разложение мочевины. Одной из специальных групп аммонификаторов являются бактерии, разлагающие мочевину. Мочевина - главная составная часть мочи человека и большинства животных. Человек выделяет бактерии, разлагающие в день от 30 до 50 г мочевины. Под влиянием бактерий мочевина разлагается, образуется карбонат аммония. Последний быстро распадается на воду, аммиак и углекислый газ.

Процесс нитрификации. Образовавшийся в результате аммонификации аммиак или используется высшими растениями, или нитрифицируется. Процесс нитрификации заключается в окислении аммиака до азотной кислоты. Первая фаза нитрификации вызывается микробом, окисляющим аммиак до азотистой кислоты. Он получил название нитрозомонас. Вторая фаза вызывается бактерией нитробактер, окисляющей азотистую кислоту до азотной. В почве азотистая кислота не накапливается, так как обе эти бактерии встречаются всегда вместе, находясь в своеобразном симбиозе.

Нитрозомонас представляет собой снабженную жгутиком шарообразную бактерию, а нитробактер неподвижен и является маленькой палочкой. На первом этапе нитрификации выделяется больше энергии, чем на втором.

В первой фазе нитрификации выделяется 663,6 Дж (или 158 кал):

Во второй фазе нитрификации энергии освобождается значительно меньше:

Нитрификаторы синтезируют органическое вещество путем хемосинтеза за счет энергии окисления аммиака в азотистую кислоту, а азотистой кислоты в азотную. Нитрификаторы, так же как и зеленые растения, используют для питания углекислый газ.

С.Н. Виноградский обнаружил очень высокую чувствительность нитрификаторов к органическому веществу, которое действует на них как яд, причем нитрозомонас более чувствителен к органическому веществу, чем нитробактер. Малые концентрации органического вещества задерживают рост бактерий, а несколько большие окончательно его останавливают.

Нитрификация в почве. Нитрификация в почве идет несколько отлично от нитрификации в лабораторной обстановке. В первую очередь это касается влияния на этот процесс органического вещества. Если в лабораторной обстановке нитрификаторы проявляют очень высокую чувствительность к органическому веществу и в его присутствии не растут, то в природной обстановке наблюдается как раз обратная картина. Наличие органического вещества способствует процессу нитрификации, так как является источником образования аммиака.

Процесс денитрификации. С круговоротом азота в природе связан также и процесс денитрификации, обратный по своей сути процессу азотфиксации. Денитрификацией называется процесс восстановления нитратов до свободного азота.

Процесс денитрификации, в отличие от нитрификации и азотфиксации, вызывается целым рядом малоспецифических микроорганизмов, относящихся к неспороносным палочкам. Денитрифицирующие бактерии являются факультативными анаэробами. В условиях широкого доступа кислорода они денитрификации не производят. Стоит им, однако, попасть в анаэробные условия, как при наличии нитратов и доступного им органического вещества начинается процесс денитрификации. При нехватке кислорода микроорганизмы начинают отнимать его от нитратов, восстанавливая их. Одновременно при этом окисляется усвояемое ими органическое вещество - сахара или соли органических кислот. Наилучшими условиями для протекания процесса денитрификации являются анаэробные условия, наличие нитратов и подходящего для микроорганизмов органического вещества.

Круговорот азота в природе. Подведем итоги по круговороту азота в природе. Высшее растение синтезирует белок в своем теле из связанного минерального азота и углеводов. Растения поедаются животными, которые сами не в состоянии синтезировать белки из углеводов и минерального азота. Отмирая, животные и растения становятся пищей гнилостных бактерий, разлагающих белки до аммиака, эти же бактерии разлагают и белки, находящиеся в навозе. Аммиак усваивается растением или нитрифицируется. Азотфиксаторы связывают атмосферный азот и переводят опять в белковый, который в дальнейшем может разлагаться гнилостными бактериями. Здесь следует еще упомянуть о связывании азота электрическими разрядами в атмосфере, который в виде азотной кислоты с дождем попадает в почву. Так происходит круговорот азота в природе; он переходит из одной формы в другую, подтверждая великий закон природы - закон сохранения вещества, открытый М.В. Ломоносовым.

f-mx.ru

Реферат: Поступление и превращение азота в растениях - geum.ru

Поступление и превращение азота в растениях

Поглощение азота растением

Формы азота, используемые растением. Азот входит в состав важнейшей части живого организма, а именно в состав запасных белков и белков цитоплазмы. В составе золы азота нет, так как при сжигании растений он образует газообразные окислы. В сухом веществе растения содержится в среднем 1,5% азота. Добывание азота представляет для растениянаибольшие трудности, так как азот не входит в состав минералов и его накопление и превращение в почве полностью связано с жизнедеятельностью организмов.

В почве доступный для растения азот находится в основном в форме нитратов аммонийных солей.

Восстановление нитратов растениями. Нитраты представляют собой окисленную форму азота и должны быть восстановлены растением до NH2 , после чего они могут войти в состав аминокислот, а затем белка. Можно считать, что восстановление нитратов идет двумя путями:

1)восстановление за счет химической энергии дыхания и 2) фотохимическое восстановление в хлоропластах.

Восстановление нитратов идет этапами: сначала до азотистой кислоты HNO2, затем до гидрокисламина NH2OH и, наконец, до аммиака NH3. Восстановление нитратов до NH3-и NH2-гpyпп осуществляется с помощью фермента нитратредуктазы, в состав кофермента которой входит молибден.

Восстановленный азот нитратов или непосредственно поглощенный ион аммония, соединяясь с продуктами превращения углеводов, образует аминокислоты, а затем белки. Аммиак, реагируя с некоторыми органическими кислотами, может образовать аминокислоты. Так, например, аммиак, реагируя с пировиноградной кислотой, образует аминокислоту аланин:

Образовавшиеся белковые вещества подвергаются превращениям в теле растения. Животный организм все время выводит азот из своего тела в виде мочевины и отчасти мочевой кислоты. В отличие от животных растение очень бережно относится к азоту, не теряя его.

При прорастании семян расщепляются запасные белки, а количество конституционных белков не только не уменьшается, а все время увеличивается. Затем происходит накопление белков в связи с переходом растения к автотрофному питанию.

Роль амида, аспарагина, глютамина и мочевины в растении. При восстановлении нитратов, а также при дезаминировании аминокислот (т.е. отщеплении от них аммиака) в растениях может накопляться аммиак, который ядовит для большинства из них. В растении аммиак обезвреживается, так как он связывается аспарагиновой или глутаминовой кислотой, образуя соответственные амиды (аспарагин, глутамин). У многих низших растений образуется мочения:

Доказан и прямой синтез мочевины из углеводов и аммиака у многих грибов (дождевики, шампиньоны). Содержание мочевины у дождевиков доходит до 10,7% от сухого вещества. Таким образом, аспарагин, глутамин и мочевина играют большую физиологическую роль, так как являются соединениями, обезвреживающими ядовитое действие аммиака, а также представляют собой резерв аминогрупп NH2 в растении для синтеза аминокислот.

Подводя итоги, можно отметить два типа синтеза белков: первичный и вторичный. В обоих этих синтезах аммиак играет большую роль, что и дало возможность Д.Н. Прянишникову сказать, что аммиак есть альфа и омега (первая и последняя буквы греческого алфавита), т.е. начало и конец, превращения белков в растениях. При первичном синтезе из аммиака и углеводов строится белок (левая часть схемы). При распаде белка образуются аминокислоты, от которых при дезаминировании отщепляется аммиак, связывающийся в аспарагин или глютамин. При вторичном синтезе белков (правая и нижняя части схемы) происходит отщепление аммиака от аспарагина и образование аминокислот из углеводов (вернее, из продуктов их превращения) и аммиака. Все эти представления можно объединить в следующую схему Прянишникова:

Усвоение органических форм азота

Стерильные культуры покрытосеменных растений

Долгое время оставался нерешенным вопрос о возможности усвоения корневой системой растений органических форм азота. Вопрос этот можно было решить только в стерильных культурах, так как в нестерильных условиях развились бы бактерии, которые своими ферментами разложили бы органический азот и превратили бы его в минеральные формы. Корневая система высших растений находилась в простерилизованном питательном растворе, содержащем органический азот. Семена растений стерилизовались бромной водой или раствором сулемы.

Опыты показали, что хотя аминокислоты и могут быть усвоены зеленым растением, но это усвоение идет крайне медленно, и растения, выращенные на этих соединениях, всегда отстают в росте от растений, получивших минеральные формы азота.

Насекомоядные растения. Большой интерес представляют высшие растения со своеобразным типом азотистого питания. Сюда относятся некоторые сапрофиты, паразиты, полупаразиты и, наконец, насекомоядные растения. Своеобразие азотистого, а у некоторых форм и углеродного питания возникло в процессе эволюции под влиянием условий существования и естественного отбора. Таким образом, в отличие от грибов и бактерий, где гетеротрофное питание азотом имеет первичный характер, у этих растений оно возникло вторично. Наиболее интересную группу растений, питающихся органическим азотом, составляют насекомоядные растения.

К насекомоядным растениям принадлежит примерно 500 видов растений. Все они обитатели болот. Несмотря на богатство болотных почв органическим веществом, находящийся в этих почвах органический азот недоступен для растений. Болотные почвы также очень бедны и минеральными солями (фосфор, калий и др.). Все насекомоядные растения имеют хлорофилл, т.е.

Ознакомимся с некоторыми представителями насекомоядных растений.

Росянка - многолетнее растение, растет на сфагновых болотах. Каждый год на поверхности мха образуется новая розетка листьев росянки. Листья снабжены многочисленными железистыми волосками (их часто называют щупальцами), выделяющими липкую жидкость, к которой и прилипают мелкие насекомые - комары и мелкие мухи. При прилипании насекомого пластинка листа свертывается. Особенно хорошо это свертывание пластинки видно у вида росянки длиннолистной. После того как насекомое прилипнет к листу, в растении начинается выделение гидролитических ферментов - протеаз, разлагающих белки, и муравьиной кислоты. Кислота способствует работе фермента протеазы, и, кроме того, она действует как яд на бактериальную флору. Последнее очень важно, так как пышное развитие флоры гнилостных бактерий могло бы сказаться отрицательно на самом растении.

Ботаник Фрэнсис Дарвин, сын Чарльза Дарвина, выяснил благоприятное влияние питания росянки насекомыми. Он взял шесть сосудов с растениями росянки и разделил каждый из них перегородкой. По одну сторону перегородки росянки получали мясо, а по другую сторону им его не давали.

В конце опыта выяснилось, что на 100 цветков у контрольной группы, которые не получали мяса, приходится 165 цветков у получавших мясо. Иными словами, репродуктивная способность растений росянки, питавшихся мясом, сильно возрастала.

Большой интерес представляет обитающая в болотистых водоемах пузырчатка . Помимо рассеченных листьев, она несет еще характерные пузыревидно измененные листья. В такой пузырек проникают мелкие рачки и уже не могут выбраться наружу, так как створка, сквозь которую проник рачок, открывается в одну сторону.

Из других насекомоядных растений можно отметить кувшиноносы ( непентес) из тропиков Мадагаскара и Явы: австралийский цефалотус и американскую сарацению, листья которых имеют вид кувшинов, куда и попадают насекомые. Эти растения также выделяют гидролизирующие белки-ферменты и переваривают насекомых. У цефалотуса выделения ферментов не происходит.

Многие насекомоядные растения привлекают к себе насекомых яркой окраской листьев, а некоторые выделяют сладкий сок. Так, например, у кувшиноноса в верхней части кувшинчиков имеются железки, выделяющие сладкий сок.

Особенно интересна венерина мухоловка, растущая на болотах штата Каролина в Северной Америке. Это небольшое растение активно захлопывает створки листьев, когда насекомое заденет чувствительный волосок его листа.

Симбиоз и паразитизм. Особую группу покрытосеменных растений составляют сапрофиты. Встречаются они на богатой органическими веществами почве, в лесах, среди разлагающейся лесной подстилки. К ним относятся такие растения, как подъельник и орхидея гнездовка. Оба эти растения бесцветны. Правда, в листьях гнездовки содержится небольшое количество хлорофилла а, хлорофилла б у нее совсем не найдено.

Подъельник - растение-сапрофит, лишенное хлорофилла. По-видимому, гриб снабжает подъельник углеводами и азотистыми веществами из малодоступного для растения перегноя, очевидно, получая от растения физиологически активные вещества (витамины), а также, возможно, и аминокислоты. Выращивая сосну в стерильных условиях и затем заражая ее определенным видом гриба (эктотрофная микориза), удалось экспериментально доказать наличие связи между высшим растением и грибом. При наблюдениях за растениями и грибами в природной обстановке выявилась тесная связь между определенными грибами и высшими растениями. По меткому выражению одного ученого, гриб кортинариус следует за березой, как "дельфин за кораблем". Большинство наших съедобных грибов образуют эктотрофную микоризу и тесно связано с определенными деревьями. Это давно отмечено в названиях грибов.

В настоящее время показано, что семена орхидеи содержат очень незначительные количества витамина РР (никотиновой кислоты). Грибок снабжает семена орхидеи никотиновой кислотой, после чего они и начинают прорастать. Кроме того, синтез витамина Biтакже несколько затруднен у орхидей, и снабжение семян этими веществами способствует их прорастанию и росту корней и надземной массы.

Большинство травянистых дикорастущих и культурных растений также содержат эндотрофную микоризу, вызываемую низшими грибами, имеющими неразделенный перегородками мицелий. Отмечено, что при неблагоприятных условиях, например при сильном увлажнении, гриб часто становится паразитом растения. По-видимому, и в случае эндотрофной микоризы гриб снабжает растение азотом, добывая его из перегноя, а от растения получает углеводы, а также физиологически активные вещества.

К последней группе растений, отклоняющихся в своем азотистом питании, относятся полупаразиты и паразиты. По-видимому, путь к паразитизму у высших растений лежал и лежит через полупаразитизм.

Много полупаразитов встречается в семействе норичниковых. Среди полупаразитов из норичниковых можно отметить характерные растения лугов: погремок, очанку и др. Растения эти присасываются своими корнями к корням других растений. Одни из них сохраняют более или менее нормальную зеленую окраску, а другие уже значительно меньше содержат хлорофилла (как, например, погремок). Основной причиной перехода этих растений к паразитическому образу жизни является слабое развитие корневой системы, вследствие чего они не могут свести своего водного баланса.

Из полных паразитов можно упомянуть о видах заразихи, поражающей подсолнечник, тыквенные и ряд дикорастущих растений. Мелкие семена заразихи прорастают, стимулируемые подкислением субстрата корневыми выделениями. Основным мероприятием по борьбе с заразихой является создание невосприимчивых (иммунных) сортов.

Паразит повилика в отличие от заразихи, которая поражает корни, обвивает растение и присасывается к его стеблю. У повилики имеется очень незначительное количество хлорофилла. Проросток повилики совершает круговое движение, свойственное всем растениям, но у повилики оно проявляется особенно резко. Если при этом повилика не встретит растения, вокруг которого она может обвиться, то она погибает.

Усвоение молекулярного азота микроорганизмами

Клубеньковые бактерии. Способность бобовых растений использовать атмосферный азот была доказана опытами немецких ученых Г. Гельригеля и Г. Вильфарта в 1886 г. Им удалось показать, что, посеянные в прогретый песок, в котором убиты все бактерии, бобовые растения, не образующие в этом случае клубеньков, не усваивают (не фиксируют) атмосферный азот, а растут лишь при наличии его в виде сортветственных солей в песке. Впоследствии бактерии были выделены в чистую культуру и названы клубеньковыми бактериями. Оказалось, что, прекрасно развиваясь на питательных средах, клубеньковые бактерии обычно не фиксируют при этом атмосферного азота. Усвоение азота воздуха идет у них беспрепятственно только в симбиозе (сожительстве) с бобовыми растениями.

Характер симбиоза. Находящиеся в почве клубеньковые бактерии проникают в корень бобового растения и здесь начинают размножаться, образуя сплошной тяж бактерий, идущий через ряд клеток. Бактерии интенсивно делятся и заполняют клетки корня. Бобовое растение не остается инертным по отношению к проникшей бактерии, а реагирует усиленным делением клеток, разрастающихся в виде клубеньков или желваков. Клубеньковые бактерии приносят растению пользу, снабжая его азотом.

Специфичность клубеньковых бактерий. Клубеньковые бактерии, поселяющиеся на корнях клевера, не заражают никакой другой бобовой культуры. Клубеньковые бактерии, развивающиеся на горохе, могут, кроме гороха, заражать вику, чечевицу, чину и конские бобы. Иными словами, клубеньковые бактерии образуют специфические расы, заражающие только определенные виды бобовых растений.

Вирулентность клубеньковых бактерий. Вирулентностью бактерий называется их способность заражать данное растение. Очень часто клубеньковые бактерии оказываются маловирулентными, т.е. не заражают или плохо заражают бобовые растения.

Активность клубеньковых бактерий. Помимо вирулентности, важное значение имеет и активность данной расы бактерий. Раса клубеньковой бактерии может быть очень вирулентной, но в то же время неактивной, т.е. она может давать много клубеньков, но не усваивать атмосферного азота.

Бактериальное удобрение нитрагин. Фактически очень часто даже на землях, где десятилетиями культивировались мотыльковые растения, на корнях образуется очень небольшое число клубеньков или даже их совсем не образуется. Для того чтобы обеспечить наличие активных клубеньков, мотыльковые растения перед посевом можно заразить бактериальным препаратом, состоящим обычно из нескольких рас клубеньковых бактерий. Такой бактериальный препарат получил название нитрагин.

Другие азотфиксирующие симбиотические организмы. Помимо клубеньковых бактерий, в природе встречаются и другие аналогичные симбиозы. На корнях ольхи образуются большие деревянистые вздутия (клубеньки), в которых находятся актиномицеты, фиксирующие атмосферный азот.

Свободноживущие азотфиксаторы. Помимо клубеньковых бактерий, в почве встречаются еще и другие виды, способные усваивать атмосферный азот. Выделить подобную бактерию удалось С.Н. Виноградскому в 1893 г. на специальной среде для азотфиксирующих бактерий. Для этой цели он взял среду, содержащую глюкозу и некоторые соли, но абсолютно не содержащую связанного азота ни в органической, ни в минеральной форме. Таким образом, в этой среде могли развиваться только те бактерии, которые усваивают азот из воздуха. Кроме того, опыт был поставлен в анаэробных условиях, т.е. без доступа кислорода. В этих условиях удалось выделить бактерию, вызывающую масляно-кислое брожение, хорошо фиксирующую атмосферный азот, - клостридиум пастерианум.

Свое видовое название бактерия получила в честь Пастера, а родовое - от латинского слова "клострум" - веретено. Клостридиум является сравнительно крупной палочкой, в 3 - 4 мкм длины, дающей споры. Во время спорообразования клетка клостридиума вздувается в виде веретена. Клостридиум имеет жгутики, расположенные по всейповерхности тела, и может сравнительно быстро перемещаться. В лабораторных условиях клостридиум фиксирует атмосферный азот, хотя и в небольших, но заметных количествах от 1 до 5 мг азота на 1 г использованного сахара. Клостридиум - очень широко распространенная бактерия, встречающаяся в самых разнообразных почвах - кислых, нейтральных и щелочных.

Азотобактер. Другой азотфиксирующей бактерией является азотобактер, открытый в 1901 г. Азотобактер в отличие от клостридиума - форма аэробная, развивающаяся при широком доступе кислорода. Азотобактер имеет характерную форму удлиненного кокка, делящегося не путем появления поперечной перегородки, а перетяжкой (Рис.60). Клетки азотобактера довольно крупные. Размер их колеблется от 1 до 10 мкм. Клетки окружает слизистая капсула. Форма азотобактера не остается без изменения. В молодом возрасте он имеет форму очень толстой палочки, затем эллиптическую, а часто и совсем округлую форму. Фиксация азота азотобактером более интенсивна, чем у клостридиума, а именно от 2 до 12 и даже до 20 мг азота на 1 г сахара. Азотобактер очень чувствителен к реакции среды. Оптимум для его развития будет при рН = 7,0 или 7,2, максимум - при рН = 9,0. В почвах, имеющих рН ниже 5,6, он обычно не встречается.

Механизм фиксации азота не может считаться до сего времени полностью выясненным. Наиболее вероятное предположение заключается в том, что водород при брожении у клостридиума и при дыхании у азотобактера выделяется не в молекулярном (Нг) виде, а в форме атомного водорода (2Н). Вот этот-то активный атомный водород и способен связывать молекулярный азот атмосферы в виде аммиака. В последнее время, применяя тяжелый азот (l5 N2), удалось показать значительную достоверность этой точки зрения.

Установлено, что многие сине-зеленые водоросли также фиксируют атмосферный азот.

Азотобактерин. Существует препарат азотобактера для заражения семян, названный азотобактерином. Азотобактерин готовится на аграрной среде в бутылках. Для заражения порции семян на 1 га требуется этого препарата всего 10 - 15 г. Многочисленные опыты дали очень неустойчивые результаты при применении азотобактерина. Лучше всего на азотобактерин реагируют некоторые овощные культуры.

Величины фиксации азота бактериями. Фиксация азота азотфиксирующими бактериями достигает значительных величин. Клевер за счет бактерий накапливает ежегодно в среднем 150-160 кг азота на 1 га, люцерна - около 300 кг, люпин - до 160 кг. Однолетние бобовые фиксируют значительно меньшие количества азота. Так, например, соя фиксирует из воздуха в год около 100, вика - 80, горох - около 60, фасоль - около 70 кг.

Бактерии в почве и их роль в круговороте веществ в природе

Число бактерий в почве. В почве содержится огромное число бактерий. Раньше их число измерялось сотнями тысяч на один грамм почвы. С.Н. Виноградский (1924) разработал метод непосредственного микроскопического подсчета бактерий в почве путем их окраски. После этого стало ясно, что число бактерий измеряется сотнями миллионов в 1 г. В бедных тундровых или песчаных почвах пустыни их насчитывается до J500 миллионов, в слабоподзолистых почвах - до одного миллиарда, а в богатых органическим веществом (чернозем) - до двух миллиардов и выше.

Два миллиарда бактерий в 1 г почвы составляют около 3% сухой массы почвы. Такое большое число бактерий позволяет считать, что большинство процессов, происходящих в почве, носит биологический характер, т.е. связано с жизнедеятельностью бактерий.

Если бы процесс накопления азота, так же как и углерода, шел только в одну сторону, то жизнь стала бы скоро на Земле невозможной из-за обилия неразложившихся органических остатков. Мы уже знаем, что жизнедеятельность бактерий является причиной разложения белковых веществ.

Разложение белков бактериями. Бактерии, разлагающие белковые вещества на более простые составные части, называются гнилостными бактериями или аммонификаторами, так как в результате разложения белков в среде накапливается аммиак. Разлагая сложные белковые вещества на простые минеральные соединения, бактерии сами питаются продуктами разложения и размножаются. Однако образуемая ими масса тел составляет лишь ничтожную долю от разложившегося вещества. В этой минерализующей деятельности и заключается та огромная полезная роль гнилостных бактерий, которую они играют в природе.

Процесс гниения протекает как в анаэробных, так и в аэробных условиях. Особенно быстро он проходит в аэробных условиях.

В факультативно-анаэробных условиях гниение белков осуществляется целым рядом бактерий. Из них можно отметить кишечную палочку и протея.

В аэробных условиях разложение белков производит сенная палочка и другие спорообразующие формы. Из неспоро-образующих форм можно упомянуть небольшую палочку (1-2 мкм) - псевдомонас.

При гниении образуются вода, углекислый газ, аммиак, сероводород, метилмеркаптан (CH3 SH). Очень характерными продуктами анаэробного расщепления белков являются дурно пахнущие продукты индол и скатол, возникающие в результате частичного разрушения аминокислоты триптофана в анаэробных условиях.

Высушенное белковое вещество не разлагается бактериями и может сохраняться очень долго. Сушеное или прокопченное мясо, сухой яичный порошок не портятся, если их хранить всухом месте.

Разложение мочевины. Одной из специальных групп аммонификаторов являются бактерии, разлагающие мочевину. Мочевина - главная составная часть мочи человека и большинства животных. Человек выделяет бактерии, разлагающие в день от 30 до 50 г мочевины. Под влиянием бактерий мочевина разлагается, образуется карбонат аммония. Последний быстро распадается на воду, аммиак и углекислый газ.

Процесс нитрификации. Образовавшийся в результате аммонификации аммиак или используется высшими растениями, или нитрифицируется. Процесс нитрификации заключается в окислении аммиака до азотной кислоты. Первая фаза нитрификации вызывается микробом, окисляющим аммиак до азотистой кислоты. Он получил название нитрозомонас. Вторая фаза вызывается бактерией нитробактер, окисляющей азотистую кислоту до азотной. В почве азотистая кислота не накапливается, так как обе эти бактерии встречаются всегда вместе, находясь в своеобразном симбиозе.

Нитрозомонас представляет собой снабженную жгутиком шарообразную бактерию, а нитробактер неподвижен и является маленькой палочкой. На первом этапе нитрификации выделяется больше энергии, чем на втором.

В первой фазе нитрификации выделяется 663,6 Дж (или 158 кал):

Во второй фазе нитрификации энергии освобождается значительно меньше:

Нитрификаторы синтезируют органическое вещество путем хемосинтеза за счет энергии окисления аммиака в азотистую кислоту, а азотистой кислоты в азотную. Нитрификаторы, так же как и зеленые растения, используют для питания углекислый газ.

С.Н. Виноградский обнаружил очень высокую чувствительность нитрификаторов к органическому веществу, которое действует на них как яд, причем нитрозомонас более чувствителен к органическому веществу, чем нитробактер. Малые концентрации органического вещества задерживают рост бактерий, а несколько большие окончательно его останавливают.

Нитрификация в почве. Нитрификация в почве идет несколько отлично от нитрификации в лабораторной обстановке. В первую очередь это касается влияния на этот процесс органического вещества. Если в лабораторной обстановке нитрификаторы проявляют очень высокую чувствительность к органическому веществу и в его присутствии не растут, то в природной обстановке наблюдается как раз обратная картина. Наличие органического вещества способствует процессу нитрификации, так как является источником образования аммиака.

Процесс денитрификации. С круговоротом азота в природе связан также и процесс денитрификации, обратный по своей сути процессу азотфиксации. Денитрификацией называется процесс восстановления нитратов до свободного азота.

Процесс денитрификации, в отличие от нитрификации и азотфиксации, вызывается целым рядом малоспецифических микроорганизмов, относящихся к неспороносным палочкам. Денитрифицирующие бактерии являются факультативными анаэробами. В условиях широкого доступа кислорода они денитрификации не производят. Стоит им, однако, попасть в анаэробные условия, как при наличии нитратов и доступного им органического вещества начинается процесс денитрификации. При нехватке кислорода микроорганизмы начинают отнимать его от нитратов, восстанавливая их. Одновременно при этом окисляется усвояемое ими органическое вещество - сахара или соли органических кислот. Наилучшими условиями для протекания процесса денитрификации являются анаэробные условия, наличие нитратов и подходящего для микроорганизмов органического вещества.

Круговорот азота в природе. Подведем итоги по круговороту азота в природе. Высшее растение синтезирует белок в своем теле из связанного минерального азота и углеводов. Растения поедаются животными, которые сами не в состоянии синтезировать белки из углеводов и минерального азота. Отмирая, животные и растения становятся пищей гнилостных бактерий, разлагающих белки до аммиака, эти же бактерии разлагают и белки, находящиеся в навозе. Аммиак усваивается растением или нитрифицируется. Азотфиксаторы связывают атмосферный азот и переводят опять в белковый, который в дальнейшем может разлагаться гнилостными бактериями. Здесь следует еще упомянуть о связывании азота электрическими разрядами в атмосфере, который в виде азотной кислоты с дождем попадает в почву. Так происходит круговорот азота в природе; он переходит из одной формы в другую, подтверждая великий закон природы - закон сохранения вещества, открытый М.В. Ломоносовым.

Могут быть интересны документы, которые смотрят вместе с Реферат: Поступление и превращение азота в растениях
Земледелие
Содержание Введение........................2 Глава I Краткая характеристика агроклиматических условий Зауралья...3 Глава II Факторы жизни растений и ... Приближенно содержание этого элемента в доступной форме устанавливают химическими методами, в частности методом Тюрина - Кононовой, которым определяется в почве содержание ... Следствием положительного действия извести является улучшение условий для развития полезной микрофлоры в почве (нитрификаторов, клубеньковыхбактерий, свободноживущих фиксаторов ...

yurii.ru

Охарактеризуйте роль азота и фосфора в жизни растений.

Masha

Азот -это, можно сказать, один из основных элементов, необходимых для растений. Он входит в состав всех белков, нуклеиновых кислот, аминокислот, хлорофилла, ферментов, многих витаминов, липоидов и других органических соединений, которые образуются в растениях. При недостатке азота замедляется рост растений, сокращается вегетационный период (период размножения) , уменьшается содержание белка и снижается урожай растений (если оно плодородное) .

Фосфор участвует в обмене веществ, делении клеток, размножении, передаче наследственных свойств и в других сложнейших процессах, которые могут происходить в растении. Он входит в состав сложных белков (нуклеопротеидов) , нуклеиновых кислот, фосфатидов, ферментов, витаминов, фитина и других биологически активных веществ. Особенно необходим фосфор для молодых растений, так как способствует развитию корневой системы, повышает интенсивность кущения зерновых культур. Как и азот, фосфор является одним из важных элементов питания растений. Фосфор в отличие от азота ускоряет развитие культур, стимулирует процессы оплодотворения, формирования и созревания плодов.

Настя Волк

Чистый (элементарный) азот сам по себе не обладает какой-либо биологической ролью. Биологическая роль азота обусловлена его соединениями. Так в составе аминокислот он образует пептиды и белки (наиболее важный компонент всех живых организмов); в составе нуклеотидов образует ДНК и РНК (посредством которых передается вся информация внутри клетки и по наследству); в составе гемоглобина участвует в транспорте кислорода от легких по органам и тканей.

Некоторые гормоны также представляют собой производные аминокислот, а, следовательно, также содержат азот (инсулин, глюкагон, тироксин, адреналин и пр.). Некоторые медиаторы, при помощи которых «общаются» нервные клетки также имеют в своем составе атом азота (ацетилхолин).

Такое соединения как оксид азота (II) и его источники (например, нитроглицерин – лекарственное средство для снижения давления) воздействуют на гладкую мускулатуру кровеносных сосудов, обеспечивая ее расслабление и расширение сосудов в целом (приводит к снижению давления).

Читайте также: